Deep-Reinforcement-Learning-Based Distributed Computation Offloading in Vehicular Edge Computing Networks

نویسندگان

چکیده

Vehicular edge computing has emerged as a promising paradigm by offloading computation-intensive latency-sensitive tasks to mobile-edge (MEC) servers. However, it is difficult provide users with excellent Quality-of-Service (QoS) relying only on these server resources. Therefore, in this article, we propose formulate the computation policy based deep reinforcement learning (DRL) vehicle-assisted vehicular network (VAEN) where idle resources of vehicles are deemed Specifically, each task represented directed acyclic graph (DAG) and offloaded nodes according our proposed subtask scheduling priority algorithm. Further, formalize problem under constraints candidate service vehicle models, which aims minimize long-term system cost, including delay energy consumption. To end, distributed algorithm multiagent DRL (DCOM), an improved actor–critic (IACN) devised extract features, joint mechanism prioritized experience replay adaptive $n$ -step (JMPA) enhance efficiency. The numerical simulations demonstrate that, VAEN scenario, DCOM achieves significant decrements latency consumption compared other advanced benchmark algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mobile Edge Computation Offloading Using Game Theory and Reinforcement Learning

Due to the ever-increasing popularity of resourcehungry and delay-constrained mobile applications, the computation and storage capabilities of remote cloud has partially migrated towards the mobile edge, giving rise to the concept known as Mobile Edge Computing (MEC). While MEC servers enjoy the close proximity to the end-users to provide services at reduced latency and lower energy costs, they...

متن کامل

Learning-Based Task Offloading for Vehicular Cloud Computing Systems

Vehicular cloud computing (VCC) is proposed to effectively utilize and share the computing and storage resources on vehicles. However, due to the mobility of vehicles, the network topology, the wireless channel states and the available computing resources vary rapidly and are difficult to predict. In this work, we develop a learning-based task offloading framework using the multi-armed bandit (...

متن کامل

Deep Reinforcement Learning for Traffic Light Control in Vehicular Networks

Existing inefficient traffic light control causes numerous problems, such as long delay and waste of energy. To improve efficiency, taking real-time traffic information as an input and dynamically adjusting the traffic light duration accordingly is a must. In terms of how to dynamically adjust traffic signals’ duration, existing works either split the traffic signal into equal duration or extra...

متن کامل

Price-Based Distributed Offloading for Mobile-Edge Computing with Computation Capacity Constraints

Mobile-edge computing (MEC) is a promising technology to enable real-time information transmission and computing by offloading computation tasks from wireless devices to network edge. In this study, we propose a price-based distributed method to manage the offloaded computation tasks from users. A Stackelberg game is formulated to model the interaction between the edge cloud and users, where th...

متن کامل

Performance Optimization in Mobile-Edge Computing via Deep Reinforcement Learning

To improve the quality of computation experience for mobile devices, mobile-edge computing (MEC) is emerging as a promising paradigm by providing computing capabilities within radio access networks in close proximity. Nevertheless, the design of computation offloading policies for a MEC system remains challenging. Specifically, whether to execute an arriving computation task at local mobile dev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Internet of Things Journal

سال: 2023

ISSN: ['2372-2541', '2327-4662']

DOI: https://doi.org/10.1109/jiot.2023.3247013